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The three pair distribution functions have been calculated for a quantum-mechanical mixture of inter
acting gases obeying Bose-Einstein or Fermi-Dirac statistics in terms of the respective fugacity series ex
pansions, the coefficients of which are temperature-dependent. The case of a mixture of two kinds ofh ard-
sphere bosons has been explicitly studied and the results have been expressed up to first order in interaction 
parameters. 

1. INTRODUCTION 

IT is of great physical interest to study the equi
librium properties of a mixture consisting of two 

different kinds of components.1 The main feature of 
such a program lies in the fact that the study of such 
properties leads us to a clear understanding of the inter
actions operating between the particles of different 
kinds. In this, one invariably starts with an assumed 
law of interaction and then compares the conclusions 
with the experiment to revise the interacting potential 
between the particles. If the interparticle potential is 
assumed to be pairwise additive, one can readily show 
that the equilibrium properties of the system are deter
mined by the two-body pair correlation functions. I t 
may also be noted here that in some of the recent work 
on transport phenomena in fluids the importance of the 
pair correlation functions has been duly emphasized 
with particular regard to the calculations of various 
transport coefficients. If the system consists of one type 
of particles, all the thermodynamical properties can be 
expressed in terms of one-pair correlation functions 
g(2)(ri,r2) of London2 and Placzek3 (and through recent 
work of Colin and Peretti4). But in, say, a binary mix
ture there are three correlation functions, two "pure" 
and one "mixed," which need be specified separately 
and calculated. In this paper an attempt has been 
made in this direction. We have here essentially fol
lowed the binary-collision-expansion method of Lee 
and Yang5 which was generalized by Pathria and the 
author6 (PK) to embrace the systems having more 
than one component. We have started with a system 
of two bosons and as in PK, the method can easily be 
generalized to include the effects of particles obeying 
arbitrary statistics and having any spins. Starting with 

* On leave of absence from Department af Physics, Univer
sity of Delhi, Delhi, India. Present address: Courant Institute of 
Mathematical Sciences, New York University, New York, New 
York. 
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such a system, calculations for the three pair correlation 
functions have been done up to first order in interaction 
parameters. I t may be added that the three pair cor
relation functions, gm, gm, and g(11), two "pure" and 
one "mixed," respectively, are related to the respective 
three distribution functions, p(20), p(02), and p(11), 
through the relations: PY20) = Pm; p*yo2)=p<02>; and 
PP*gai) = P(n\ where p is the density of the one of the 
components (the unstarred) and p* is that of the other 
(the starred one) in a binary mixture. 

The discussion can be readily generalized to embrace 
systems having more than two components. In an M-
component system we would have M pure correlation 
functions and M(M—1)/2 mixed ones, and up to the 
first order in interaction parameters, the above starred 
and unstarred symbols in the two-component system 
would then span all the components. The generalization 
being straightforward the present calculations are given 
only for a two-component system. 

2. FORMULATION OF THREE DISTRIBUTION 
FUNCTIONS IN A BINARY MIXTURE 

We consider a two-component system consisting of 
N particles of one kind (the unstarred) and N* par
ticles belonging to the other (the starred type), all 
confined in a cubic box of dimensions LXLXL (volume 
Z,3=ft, which would, in turn, be let to go to infinity 
with the respective densities of the components being 
maintained constant). Also, it is assumed the system is 
subjected to (that is, the motions of the constituent 
particles conform to) periodic boundary conditions. 
The partition function ZNN* of such a system can 
straightaway be written as7 

ZNN*= Al,2r • -N; 1*,2* • • -N*| 

XWNN*«\l,2r • -N; 1*,2*,- • • N*V3^3*V*. (1) 
Here, the quantum-mechanical (probability) operator 
WNN*Q is defined by 

_ _ _ _ WNN*«=N\N*lexp(-(3HNN*), (2) 
7 The variables 1, 2, • • •; 1*, 2 *, • • • in the state vectors are 

really the position vectors ri, r2, • • •; ri*, r2*, • • • of the particles 
labeled by 1, 2, • • •, etc. It may also be mentioned here that if one 
chooses to work in momentum representation, these variables will 
stand for the particle momenta. 
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where HNN* is the total Hamiltonian of the system 
given by 

1 AT 1 AT* 

HNN*= E V / £ V,* 2+F, (3) 
2m *-*• 2 m * <*-1 

with m and m* being the respective masses of the two 
types of particles, while V is the potential energy opera
tor which consists of a sum over all pairs of particles 
constituting the system,8 and 

P=l/kBT. (4) 

Here, and throughout the present investigation, we 
shall use h—\. 

While studying the thermodynamic properties of a 
system one goes through the generalized Mayer-Kahn-
Uhlenbeck9 scheme of cluster integrals for imperfect 
gases: 

U*i-*W*l-*W«-*U*, (5) 

and a generalization of the above for a mixture of 
several components has been achieved by Pathria and 
the author.6 We shall, in the present analysis, follow 
the same scheme in deriving the explicit expressions for 
the various distribution functions. 

The three, two "pure" and one "mixed," distribution 
functions in the system of our interest are respectively 
defined by the following relations: 

1 
PNN* ( * ' , J ' ) = -

ZNN*(N-i)\(N*-j)\ 

X /<l,2,-.-,N;l*,2V--,N*|WW* 

X|1,2,--.N;1*,2V--,N*> 
-dhN% (6) 

where (i,j) takes the values (2,0), (0,2), and (1,1) for 
the two pure distribution functions, p(20)(ri,r2) and 
p(02)(ri*,r2*), and for the mixed one p(11)(ri,ri*), 
respectively. 

The above definitions correspond to considerations 
with regard to a canonical ensemble and to go over to 
a grand canonical ensemble what one does is to write 
as follows: 

P(i'j)=E E PNN*(iJ) ZNN*, (7) 
N=i N*=j H 

where E, the grand partition function, is defined as 

S = E E z»z*N*zNN*, 
j\r=o N*=o 

(8) 

and z and z* are the respective fugacities of the two 
components. 

3. EVALUATION OF THE "PURE" DISTRIBUTION 
FUNCTIONS p<20> AND p(°2> 

To evaluate p(20)(ri,r2) and pm(ri*,r2*), one follows 
the rule set out in PK10 and writes WNN*Q through the 
classification of the entire ensemble into clusters keep
ing the particles 1 and 2 fixed. I t is easy to see that 
there are only two possibilities of breaking up of the 
ensemble into clusters: (1) the particles 1 and 2 are in 
different clusters, and (2) the particles 1 and 2 fall in 
the same cluster. Once we pick up the clusters contain
ing the particles 1 and 2, the system can be thought of 
as compartmentalized, one part containing these two 
fixed particles and the other without them. We then 
see that WNN*Q can be written as: 

iV—2 N* 

£ ' E " up+l,p*ll,{p};{p*nus+hq*[_2,{q};{q*}l 

where 

and 

+ E2 E £ ' E " up+^[\,2,{p); {p*nw^-P-^'-p'ypn*p^, (9) 

^1H-I,P*C1,{#};{#*}]=<1,-P(2,---P+1);^(1*,---P*)I^1H-I.P' |1,2,---P+1;1*>---P*> (10) 

UP+^'U-MP) ; {#*>]= <1,2,P(3,- • -p+2); F*(1V • -p*)| I ^ , , , ' ! 1,2,3,• • -p+2; 1*,- • -p*>. (11) 

The summation YL{P) is o v e r aU possible permutations P of the p particles of unstarred type and El**}" o v e r a ^ 
possible permutations P* of the p* starred particles, 7 and 7* are either + 1 or — 1 depending upon whether the 
respective component is of boson or fermion type. In the following analysis we shall consider the system to be made 
up to two types of spinless bosons for sake of convenience of calculations and the effects of the particles obeying 

8 We shall restrict ourselves, in the present analysis, to only two-body interactions and will not consider those of higher orders. 
9 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and P. G. Ackermann, ibid. 5, 74 (1937); J. E. Mayer and S. F. 

Harrison, ibid. 6, 87, 101 (1938); B. Kahn and G. E. Uhlenbeck, Physica 5, 99 (1938). 
10 See also the classification of the ensemble into clusters in a one-component system, L. Colin and J. Peretti, Compt. Rend. 

248, 1625 (1959). 
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arbitrary statistics and having any spin can be, as stated earlier, inserted at the end following, essentially, the 
method of Lee and Yang11 and PK. Substituting WNN*Q from (9) into (6) we find 

ZNN*PNN*™ ( r i ) r 2 ) = f2 £ App.m (Tl)A M,(U» ( r 2 ) Z ^ ^ 2 , ^ W 
ptq =0 p*,q* =0 

P+q^N-2 p* +q* < JV* 

+ E E ^ O T * ( M ) ( r 1 , r , )Z J V _ P _ , ,y_ 1 , * , (12) 

where the generalized cluster integrals A p p * m and ylpP*(20) a r e : 

^j»p* (10)( ri) = / ( l , x i , x 2 , - - - x p ; yi*,---y3 ,*|£/ l H . i i l >*|l,xi,X2- • • x * ; yi*,• • • yp*)dZpxdSp*y 
plp*\J 

= (#+l)6p+i,p* ( i n t h e limit fi-»oo) (13) 
and 

App*™(r1,r2) = I <l,2,xi,- • -x p ; yi*,- • -yP*| t ^ ^ ' l l ^ X i , - • -x , ; yi*,- • -yp*)d?pxdZp*y, (14) 
pip* IJ 

while &p+i,p* is Mayer's cluster integral. Thus we have recognized as the contribution if the system had only 
one component. This has been computed by Colin and 
Peretti, through a mixed approach of the binary-
collision expansion method of Lee and Yang and that 
of torons12 and is, up to first order in interaction 
parameters, 

8a 

p=0 p*=0 

00 00 

+ £ £ APP* 
p=0 p*=0 

= p H - / ? < a » ( r 1 , r a ) / 

S P+1 2 *P*~| 2 

( 2 0 )(ri,r2)2 p+2z*p* 

«> / m \ 3 r / 8 c 

(IS) S/."'»('..'.>—(-) [fe„,(v)l{i-7 
where p is the densi ty of the uns ta r red componen t of / m \112 

the system given by _ 8 a ( ) gV2(z)g1/2(z,s)gy2(z,s) 

I m >^3/2r 

(19) 

\27TiS/ L \2ir/3/ 

where 
\ 2 T T 0 / 

s=(m/2pyt2r, (20) 

(tnm*yi2(m+m*) _ ' = | r i - r 2 | , (21) 
_ a n * . . gm{z)gm(f), (16) a n d 

^ n M = E ( 2 V / n ) e x p ( - 5 « / 0 . (22) 
(27T/5)2 

up to first order in interaction parameters. Here, 

oo zi Here, a has been used for the hard sphere diameter of 
gn(z) = J2 —• (17) the unstarred particles. I t may be added here that the 

*=1 ln corresponding quantity for the starred particles will be 
_. , wonw \ i referred to as a*. Also, an* will be used for the corre-
To evaluate / ^ ( r ^ r , ) , we decompose the sums in s p o n d i n g p a r a m e t e r i n t h e c a s e o f interaction between 

two paits and write t h e u n H k e p a r t i c l e s # I n t h e p r e Sent case of hard spheres 
^ oo #11*=!(#+#*)> however, we shall retain here the inde-

Z) D App*
m(rhr2)z

p+2z*p* pendent parameter an* especially keeping in view the 
p==o p*=o extension of the present treatment to cases involving 

oo more realistic interactions. 
= Z-, Apo (rhr2)z

p N o w w e s n a ^ e v a l U a t e the second s u m in E q . (18). 
T o do so we shall follow essentially t he same to ron 

+ T T A *&»(r x)zv+H*p* (18) m e t h o d generalized to embrace different types of com-
p^o P7l1

 pp h ponents present in the system and keep in mind that 
the coordinates of the particles 1 and 2 are to be kept 

The first sum in the above equation (18) can easily be fixed. The generalized cluster integral App*
w can be 

11 T. D. Lee and C. N. Yang, Phys. Rev. 116, 25 (1959). 12 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958). 
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M f 1 
w \x 
M * M » •"-> h i i r\ 

\\ h h 1* 
\\Vv.A\Y 

»] »l M U 
M M * 
M M \ xf! 

1 I /, 
\\ \\ / i 

r J< ; 
i * 

' h i 

We know from Eq. (29) of PK 
* 

(ki,ki*|Z7u |k2,ki*) 

an* exp(-pE")-exp(-0E) 

-rv -n,- -n - 2TT2 k"2-k2 
•53(k!-k2), (26) 

FIG. 1. A typical schematic sketch of {(p-\-2),p*) cluster with 
ni, »2, »3, and w* as the number of particles of respective groups where 
as indicated • for details see the text. 

diagrammatically represented as in Fig. 1. This diagram 
represents a typical set up of the cluster of p-\-2 par
ticles of the unstarred and p* of the starred type. 
Keeping the particles 1 and 2 fixed, we let n\ be the 
number of particles between 1 and 2, n2 as the number 
between 2 and the particle (including this one) pro
viding the link between the starred and unstarred group 
of particles, and n% is the number of particles between 
this linking particle and the 1, also similarly w* is the 
number of particles in the starred group excluding the 
one providing the link between the groups. Thus 

ni+n2+ni+2 = p+2 and » * + l = £*. (23) 

To evaluate the integral it is convenient to work in 
the momentum representation, and the transformation 
from the coordinate to momentum space can be carried 
out through 

<k 1 ' , . . . | J7 |k 1 , . - .> 

= / e x p [ — i ( k / T i ' - • ) + * ( k i - ' i + " - ) ] 

X ( r 1 ' , - - - | ? 7 | r 1 , - - - y V - (24) 

The corresponding diagram for the generalized cluster 
integral is the momentum representation is given in 
Fig. 2. Here, the momenta of particles 1 and 2 are to 
be kept fixed and the interacting pair has the initial 
momenta kg and kx* and the final as k4 and k2* and 
integration is to be carried over all momenta except for 
those of 1 and 2. The evaluation of such an integral can 
be carried out following the general procedure laid in 
PK. The integral corresponding to the typical set up 
in Fig. 2 can be written as 

/ (k ! ,k 2 )= / exp -01 + 
2m 2m* 

X<k4,k2*|^ii |k3,k1*)53(ki-k4)53(k2-k3) 

X 5 3 ( k i * - k 2 * ) ^ 3 ^ 4 ^ i * ^ 2 * 

/nzki2+n2k2
2\) r / n*kx*

2\ 

\ 2m J\J \ 2m* J 

X<ki lk1*|^n|k2 ,ki*>P*i*. (25) 

= expj ™/3l 

E=kl
2/2m+k1*

2/2m*, 

E" = k2
2/2m+k1*

2/2m*, 

k=ju(k1 /w — ki*/w*), 

k"=/x(k2/w— k3*/w*), 

and JJL is the reduced mass. Thus we have 

/ (k 1 ;k 2 ) 

tfll* ( » 3 £ l 2 + M 2 & 2 2 

= 53(kx-k2) exp - 0 
27T2 I 2m 

(27) 

(28) 

(29) 

(30) 

X 
#*&i«2l e x p ( - / 3 £ " ) - e x p ( - | 8 £ ) 

exp] -0 : tfks, 
2m* T k"2-k2 

(31) 

and now going back to the configuration space we have 

1 
/(r1 , r2) = — f 

8w3J 
I(ki,k2) exp ( i kr i i—ik i - xz)dzki<£3&2. 

(32) 

Substituting (32) in (31) and changing the vaiiables to 
total and relative momenta, and keeping in mind the 
rotational symmetry, the integral yields 

/ ( * ) = -
Ci 1 

p*W (p_ni+1y 3/2 
exp -

mrL 

2 ( p - » i + l ) / 3 

where 

c i = — 
aii*tnl,2m*112 (w+tri*) 

(33) 

(34) 

But in the above we have not considered the contribu
tion of the loops formed by nx particles between the 
particles 1 and 2, and this would result in a multiplica-

FIG. 2. Schematic 
toron structure cor
responding to Fig. 1 ni 
in momentum repre
sentation. 

file:////Vv.A/Y
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Now we have to sum over all possible combinations of 
*tii, n2 and n% subject to the conditions 

FIG. 3. A typical schematic sketch of {(p-\-l),(p*-\rl)} cluster. 

tion factor of 

^1+^2+^3 = ^ 

O^n^p 

0^n2^p 
(37) 

/ m \8 / 2 1 mr 

\2icpJ ( > I + 1 ) 3 / 2 

Therefore, 

I(nhn2,nz;p*;r) 

e x p i -
2(»i+l)/3 

= Cl l 

m \8 /2 1 

2TT/3/ p**'2 { ( ^ - ^ I + 1 ) K + 1 ) } 3 / 2 

[ m(p+2)r2 1 

I t is quite easy to see there would be p \p*! possible 
orientations of such diagrams. Thus the contribution 
from this generalized cluster integral Avv*

{m){xx,x2) to 
(35) 

the pair distribution function is given by 

E E E I(nuns,nt;p*;r)z>W 

= Clgm{z*){gzl2{z,s)Y, (38) 
where 

an*m2m*ll2(m-\-m*) 
Cx= : . (39) 

Xexp • (36) 
(2TT/3) 7/2 

l 2 ( # - » i + l ) ( w i + l ) / 3 ) Thus we have from (15), (16), (19), and (3$) 

/ m y 
p ( 2 0 ) ( f ) ^ p 2 + ___ 

\2TT/3/ 
{gm (V) }2( 1 J - Sal J g3/2(z)g1/2 (z,s)gs/2 ( v ) 

aii*m~lni*ll'2(ni-\-ni*) 

(2T/S) 1/2 
-{g3/2(v)}2S'3/2(3*) , (40) 

and from a similar consideration as above we may evaluate the other pure pair distribution function p(02)(r*) for 
the starred particles and it is quite evident that it can straightaway be written by interchanging the role of starred 
and unstarred variables in the above equation (40). 

4. THE "MIXED" PAIR DISTRIBUTION FUNCTION p<">(ri,ri*) 

In this section we shall evaluate the mixed distribution function which would measure the correlation between 
the two types of particles in the system. In the present context we may imagine the cluster formation such that 
either the unstarred and starred fixed particles 1 and 1* are in different clusters or they may be in the same one, 
and for this purpose we can write 

WW= "£ N£ E' E" Up+1,p^l,{p);{p*^Uqig%1Z{q)-,l*,{q*}2W^p^1,N^p^q^1 
p,q=0 p*,q*=0 {p),{q\ {p*},{q*) 

p+q^N-l p*+q*<^N*-l 

+ E* V E' E" up+hP>+l\,{p}; l * , ^ * } ] ^ - , - ! , * * - ^ (41) 
P=:0 P*=0 \V) {V*} 

and 

ZNN*pNN*m fori*) = £ 
N*-l 

p,q=0 p*,q*=0 
p+q^N-1 p*+q*^N*-l 

E /lPP*<1(»(ri)^89 ' (01 )(r1*)Z^M_1 , i v*_^_9*_1 

+ 1 ; E 4,p' (1I)(ri,ri')Z»--»>-i.tf'-p'-i. (42) 

Therefore, 

where 
P(11)(ri,r10 = pp*+F ( 1 1 )(r l , r 10, 

f ( u ) ( r i , r i ' ) = E E 4pP*(11>(ri,r10*^1****+1. 
p=0 p*=0 

(43) 

(44) 

file:///2icpJ
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To evaluate App*
ai)(ti,ri*), and then F (11)(ri,ri*), we 

consider a typical orientation of a { ( i>+l ) , (^*+l )} 
cluster schematically shown in Fig. 3. In this diagram 
we have considered, in the unstarred group, n\ as the 
number of particles between the particle 1 (keeping in 
mind that this particle and also 1* are to be kept 
fixed) and the one providing the link between the un
starred and the starred groups, and n2 as the number 
between the link particle and the 1 going round the 
cluster, n* and n2* are the corresponding numbers in 
the starred particles group. Figure 4 represents the 
same scheme in the momentum representation and the 
corresponding integral is given by 

/ = /e x pH niki2+n2ki2 ni*ki*2+n2*ki*'2 

f-
2m 2m* 

X<k4jk4*|*7ii|k3,k3*> 

X53(ki-k3)53(k1
/-k4)§3(k1*-k3*) 

X 5 3 ( k 1 * , - k 4 * ) ^ 3 ^ 4 ^ 3 * ^ 4 * (45) 

and Uu, here, is given by 

0n* 
<k1

/,k1*
/|^11|k1,k1*) = — W + V - k i 

2TT2 

X-
exp(-j&E')-exp(-/3Z<:) 

k/2-k2 
(46) 

where 
Ef = k^/2m+k1*'2/2m*, (47) 

k ^ / i C k i V w - k i ^ / w * ) , (48) 

and E and k are given by (27) and (29), respectively. 
Substituting (46) in (45) and going over the spatial 
configuration we can evaluate the contribution of the 
cluster considered above. One, then, first sums over all 
such orientations and afterwards over all values of p 
and p* to get the expression for jF(11)(ri,ri*). These 
calculations aie given in the Appendix wherein one 
arrives at 

^ u ) ( | r i - r i * l ) 

an* (mm*)m ( /x( | ri— ri*| )\ 
= - 2 -

(2ir/S 

Xg3/2 * 

(m/3)112 

iu ( | r i—r x * | ) 
(49) 

where the various symbols have their usual meaning. 

5. GENERAL DISCUSSION 

We observe that the results obtained in the previous 
sections have the series of the type gn(oc) and gn(x,s) 
appearing, and these series converge only for values of 
x<\ irrespective of the value of the index n, thus re
stricting the validity of the results only to low-density 
(gaseous) systems. Also, the calculations have been 
carried out only up to first order in the interaction 

FIG. 4. Schematic 
toron structure of 

{(P+iW+D) 
cluster of Fig. 3 
in momentum repre
sentation. 

- — n g 

\sum&Q.Q!msuu 

k4* h,* 

M 
\!im&smmuL> 

k3 Js* k,» 

parameters, thereby limiting ourselves to compara
tively large interparticle distances. For short distances, 
however, higher order terms have to be considered 
where the contribution from multiparticle scattering 
also becomes quite significant. 

I t is not difficult to see that the foregoing treatment 
can be generalized to the case where the particles con
stituting the system have arbitrary spin. While doing 
so it is naturally necessary to keep in mind the statistics 
followed by individual particles. Taking the representa
tion where all the spins are quantized along the z 
direction and noting that the particle spin remains 
conserved, it is easy to see that the foregoing formalism 
requires only formal changes, e.g., the integrations over 
various momenta have to be augmented by summations 
over the respective spins. Also since the hard sphere 
interaction, considered in this paper, is spin-inde
pendent, the introduction of spin in the analysis only 
brings in certain multiplication factors depending upon 
the spin of the individual components. These factors 
can straightaway be calculated following the rule of 
Lee and Yang,11 later generalized by Pathria and the 
author.6 

Next, it may be remarked here that the treatment 
given in the foregoing sections should be capable of 
generalization to the system with more realistic inter
actions than the simple hard sphere interactions. This 
can be achieved in a quite straightforward manner 
provided the potential is such that there are no bound 
states, but at the same time the relative kinetic energy 
is smaller than the attractive potential energy between 
the particles, the conditions which in leality are quite 
compatible to each other. One expects then that in the 
foregoing analysis, one needs to replace everywhere the 
hard-sphere diameter by the respective scattering 
length.13 In this connection it may be noted that the 
calculation of some of the thermodynamical quantities 
of a fluid from the pair correlation functions is quite 
sensitive to the relative position of the minimum of the 
potential and the first peak in the correlation function. 
This problem in the one-component system has been 
dealt by Lowry, Davis, and Rice in their recent paper.14 

13 This statement is made here in view of the results of an earlier 
investigation into a single-component system by Pathria and the 
author; R. K. Pathria and M. P. Kawatra, Progr. Theoret. Phys. 
(Kyoto) 27, 1085 (1962). 

14 B. A. Lowry, H. T. Davis, and S. A. Rice, Phvs. Fluids 7, 
402 (1964). 
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APPENDIX 

In this appendix we shall evaluate Z /(u)(rbri*). We have after substituting (46) in (45) and carrying out 
the integrations over k3, k4, ks* and k4*: 

#11* 

= ^ ( k Z + k Z - k i - k i * ) exp 
2TT2 - ) : 

I(nhn2; tii*,n2*; ki',ki,ki*',ki*) 

/niki2+n2ki2 ni*kx*2+n2*ki*n 

\ +• 
\ 2m 2m* 

We then go over the spatial configurations and write 

I(nhn2;ni*,n2*; ri,ri*) 

1 

exp(-pE') - exp (-/3E) 
— . (50) 

k'2-k2 

c2 rexp(-^ / 2 /2/^)-exp(-^2 /2/x) 

(mp+m*p*+M)^2J k,2-k2 

I(nun2; tii*,n2*; ki',ki,ki*',ki*) expR(k/-r1+ki*/*r1*--ki-ri---k1*«ri*)lrf8^i/^i(/3*i*/rf3*1*. (51) 
64W 

Making a change of variables from k/ , ki, ki*', ki* to K' and K, given by 

K ' ^ k i ' + k / and K^kx+kx*, (52) 

and k' and k given by (48) and (29), respectively, and integrating first over K' and then over K one gets: 

I(nhfi2'9ni*,n2*'} ri,ri*) 

- / - ^ - : '—^ - exp[ - (Ak2+Bk/2+Ck'.k)l 
2 J k,2-k2 

X e x p [ - ; ( k ' - k ) . ( r i - r i * ) ] ^ * ^ * , (53) 
where 

{mp+m*p*+M)(m*ni+mni*)-~mm*(ni~n^)2 

A = = 0, (54) 
2{mp+m*p*-\-M)mm* 

(mp+m*p*-\-M) (m*n2+mn2*)—mm*(n2—n2*)2 

B = fi, (55) 
2 (mp+m*p*+M) mm* 

(ni—ni*)(n2—n2*) 
C= 0 , (56) 

(mp+m*p*+M) 
and 

an* Mz 

c2= . (57) 
16TT5 (2TT/5)3/2 

The integral (53) can be evaluated in a similar fashion as in Ref. 4. Since the integrand remains finite when k' —» k, 
we shall replace {k,2—k2)~x by its principal value 

P( ) = - [ exp\j(k/2-k2)m f expti(k'2-k2)m. (58) 
\k'2-k2/ 2iJ0 liJ-* 

Substituting the above in (53) we see that the integral breaks up into four different parts, picking up one of them 

7 i = — / d*k'd*k J di;exp\i(k'2-k2)£-l3— ~(AW+Bk'2+Ck-k')-i(k'--k)- ( r i - n * ) ] . (59) 

Integrat ing over k ' and k and keeping in mind the rotational symmetry, we get 

2d<rj r 2(z>+2C) 1 r»-u 2d<n r 2(z>+2C) n 
/ i = - / exp ( | r i - r H ) 2 L 

2iJ-u (T ?
2+^2-4C2)3 / 2 L 7?

2+zi2-4C2 J 
(60) 
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where 
u=i(2A-2B+p/tx) (61) 

and 
v = 2A+2B+$/n, (62) 

and similarly other parts can be evaluated. Combining these pairwise and after a little algebra one arrives at: 

I(nun*\n?nf\ | r i -r i* |)=-2(27r)3c2[F(^i+l , »2 ;»i*+l,«2*)-F(»i , »2+l;»i i f , w2*+l)], (63) 
where 

with 

F(wi,»2;»i*,W2*) = 
J/ 

o C(a-6) 2 -4c 2 - / 2 ] 3 •exp 
2(a+&+2c) 

( a + ^ - V - / 2 
( | r i - rH) 2 

6 = -

(mp+m*p*){m*ni-\-innii)-- mm*{n\—n*)2 

0 

(w^+m*^*)(w%2+^^2*)—ww*(w2—^2*)2 

and 
ww* (tnp-\-in*p*) 

(«1 —»1*)(»2~»2*) 
£ 

wip+tri^p* 

(64) 

(65) 

(66) 

(67) 

There are ^ !̂ >*! various diffeient orientations of the set up as in Fig. 3 with the given value of nh n2y %*, and n%* 
and while evaluating F(11) we allow each one of the ^'s to vary from zero to infinity. Thus 

F»1>(|r1-ri*|)=-2(2ir)8C2 £ _ — [ F ( m + 1 , n a ^ ^ + l , Wg^-FCm, w 2+l;ni , n2*+l)] 
wi.na, (mp-\-ni*p*-{-M)m 

:-2(2x)3c2 

«n2^* n 2* 

-F(0,«2;0,M2*)- £ 
« n i » * n i * 

.n2,«2*=o (m#2+w*w2*)3/2 «i,m*=o (wwi+m%i*)3/2 

The function F can be evaluated with the help of the following standard formula: 

Y(ni ,0;»i*,0)]. 

ra dy / s2 \ 1 / s2\ l 
/ exp( J = expf 1 erf 

Jo (x2—y2)zl2 \ x2—y2/ x\s\ \ #2/ I 'o (x2~y2)zl2 \ xz—yz. 

Noting that the erf is — 7r1/2/2 when a is negative, we can write 

(2x)3C27T1/2 / m W * \ S / 2 oo znZ*n> 

D ; ,.exPl 

* OJ 

F ( 1 1 ) ( | r i - r 1 * | ) - - 2 ( ) I 
V5(|ri—ri*|)\ Af / n,n* =o (*w*)8/2 

.#(x2—a2) 

vi±+ 

1/2 

(68) 

(69) 

£ \ M W*: 
rx*|)2 


